Monday, 29 August 2016

Why is a Web scraping service better than Scraping tools

Why is a Web scraping service better than Scraping tools

Web scraping has been making ripples across various industries in the last few years. Newer businesses can employ web scraping to gain quick market insights and equip themselves to take on their competitors. This works like clockwork if you know how to do the analysis right. Before we jump into that, there is the technical aspect of web scraping. Should your company use a scraping tool to get the required data from the web? Although this sounds like an easy solution, there is more to it than what meets the eye. We explain why it’s better to go with a dedicated web scraping service to cover your data acquisition needs rather than going by the scraping tool route.

Cost is lowered

Although this might come as a surprise, the cost of getting data from employing a data scraping tool along with an IT personnel who can get it done would exceed the cost of a good subscription based web scraping service. Not every company has the necessary resources needed to run web scraping in-house. By depending on a Data service provider, you will save the cost of software, resources and labour required to run web crawling in the firm. Besides, you will also end up having more time and less worries. More of your time and effort can therefore go into the analysis part which is crucial to you as a business owner.

Accessibility is high with a service

Multifaceted websites make it difficult for the scraping tools to extract data. A good web scraping service on the other hand can easily deal with bottlenecks in the scraping process when it may arise. Websites to be scraped often undergo changes in their structure which calls for modification of the crawler accordingly. Unlike a scraping tool, a dedicated service will be able to extract data from complex sites that use Ajax, Javascript and the like. By going with a subscription based service, you are doing yourself the favour of not being involved in this constant headache.

Accuracy in results

A DIY scraping tool might be able to get you data, but the accuracy and relevance of the acquired data will vary. You might be able to get it right with a particular website, but that might not be the case with another. This gives uncertainty to the results of your data acquisition and could even be disastrous for your business. On the other hand, a good scraping service will give you highly refined data which is in a ready to consume form.

Outcomes are instant with a service

Considering the high resource requirements of the web scraping process, your scraping tool is likely to be much slower than a reputed service that has got the right infrastructure and resources to scrape data from the web efficiently. It might not be feasible for your firm to acquire and manage the same setup since that could affect the focus of your business.

Tidying up of Data is an exhausting process

Web scrapers collect data into a dump file which would be huge in size. You will have to do a lot of tidying up in this to get data in a usable format. With the scraping tools route, you would be looking for more tools to clean up the data collected. This is a waste of time and effort that you could use in much better aspects of your business. Whereas with a web scraping service, you won’t have to worry about cleaning up of the data as it comes with the service. You get the data in a plug and use format which gives you more time to do better things.

Many sites have policies for data scraping

Sometimes, websites that you want to scrape data from might have policies discouraging the act. You wouldn’t want to act against their policies being ignorant of their existence and get into legal trouble. With a web scraping service, you don’t have to worry about these. A well-established data scraping provider will definitely follow the rules and policies set by the website. This would mean you can be relieved of such worries and go ahead with finding trends and ideas from the data that they provide.

More time to analyse the data

This is so far the best advantage of going with a scraping service rather than a tool. Since all the things related to data acquisition is dealt by the scraping service provider, you would have more time for analysing and deriving useful business decisions from this data. Being the business owner, analysing the data with care should be your highest priority. Since using a scraping tool to acquire data will cost you more time and effort, the analysis part is definitely going to suffer which defies your whole purpose.

Bottom line

It is up to you to choose between a web scraping tool and a dedicated scraping service. Being the business owner, it i s much better for you to stay away from the technical aspects of web scraping and focus on deriving a better business strategy from the data. When you have made up your mind to go with a data scraping service, it is important to choose the right web scraping service for maximum benefits.

Source: https://www.promptcloud.com/blog/web-scraping-services-better-than-scraping-tools

Wednesday, 17 August 2016

How Web Data Extraction Services Will Save Your Time and Money by Automatic Data Collection

How Web Data Extraction Services Will Save Your Time and Money by Automatic Data Collection

Data scrape is the process of extracting data from web by using software program from proven website only. Extracted data any one can use for any purposes as per the desires in various industries as the web having every important data of the world. We provide best of the web data extracting software. We have the expertise and one of kind knowledge in web data extraction, image scrapping, screen scrapping, email extract services, data mining, web grabbing.

Who can use Data Scraping Services?

Data scraping and extraction services can be used by any organization, company, or any firm who would like to have a data from particular industry, data of targeted customer, particular company, or anything which is available on net like data of email id, website name, search term or anything which is available on web. Most of time a marketing company like to use data scraping and data extraction services to do marketing for a particular product in certain industry and to reach the targeted customer for example if X company like to contact a restaurant of California city, so our software can extract the data of restaurant of California city and a marketing company can use this data to market their restaurant kind of product. MLM and Network marketing company also use data extraction and data scrapping services to to find a new customer by extracting data of certain prospective customer and can contact customer by telephone, sending a postcard, email marketing, and this way they build their huge network and build large group for their own product and company.

We helped many companies to find particular data as per their need for example.

Web Data Extraction

Web pages are built using text-based mark-up languages (HTML and XHTML), and frequently contain a wealth of useful data in text form. However, most web pages are designed for human end-users and not for ease of automated use. Because of this, tool kits that scrape web content were created. A web scraper is an API to extract data from a web site. We help you to create a kind of API which helps you to scrape data as per your need. We provide quality and affordable web Data Extraction application

Data Collection

Normally, data transfer between programs is accomplished using info structures suited for automated processing by computers, not people. Such interchange formats and protocols are typically rigidly structured, well-documented, easily parsed, and keep ambiguity to a minimum. Very often, these transmissions are not human-readable at all. That's why the key element that distinguishes data scraping from regular parsing is that the output being scraped was intended for display to an end-user.

Email Extractor

A tool which helps you to extract the email ids from any reliable sources automatically that is called a email extractor. It basically services the function of collecting business contacts from various web pages, HTML files, text files or any other format without duplicates email ids.

Screen scrapping

Screen scraping referred to the practice of reading text information from a computer display terminal's screen and collecting visual data from a source, instead of parsing data as in web scraping.

Data Mining Services

Data Mining Services is the process of extracting patterns from information. Datamining is becoming an increasingly important tool to transform the data into information. Any format including MS excels, CSV, HTML and many such formats according to your requirements.

Web spider

A Web spider is a computer program that browses the World Wide Web in a methodical, automated manner or in an orderly fashion. Many sites, in particular search engines, use spidering as a means of providing up-to-date data.

Web Grabber

Web grabber is just a other name of the data scraping or data extraction.

Web Bot

Web Bot is software program that is claimed to be able to predict future events by tracking keywords entered on the Internet. Web bot software is the best program to pull out articles, blog, relevant website content and many such website related data We have worked with many clients for data extracting, data scrapping and data mining they are really happy with our services we provide very quality services and make your work data work very easy and automatic.

Source: http://ezinearticles.com/?How-Web-Data-Extraction-Services-Will-Save-Your-Time-and-Money-by-Automatic-Data-Collection&id=5159023

Monday, 8 August 2016

Getting Data from the Web

Getting Data from the Web

You’ve tried everything else, and you haven’t managed to get your hands on the data you want. You’ve found the data on the web, but, alas — no download options are available and copy-paste has failed you. Fear not, there may still be a way to get the data out. For example you can:

Get data from web-based APIs, such as interfaces provided by online databases and many modern web applications (including Twitter, Facebook and many others). This is a fantastic way to access government or commercial data, as well as data from social media sites.

Extract data from PDFs. This is very difficult, as PDF is a language for printers and does not retain much information on the structure of the data that is displayed within a document. Extracting information from PDFs is beyond the scope of this book, but there are some tools and tutorials that may help you do it.

Screen scrape web sites. During screen scraping, you’re extracting structured content from a normal web page with the help of a scraping utility or by writing a small piece of code. While this method is very powerful and can be used in many places, it requires a bit of understanding about how the web works.

With all those great technical options, don’t forget the simple options: often it is worth to spend some time searching for a file with machine-readable data or to call the institution which is holding the data you want.

In this chapter we walk through a very basic example of scraping data from an HTML web page.
What is machine-readable data?

The goal for most of these methods is to get access to machine-readable data. Machine readable data is created for processing by a computer, instead of the presentation to a human user. The structure of such data relates to contained information, and not the way it is displayed eventually. Examples of easily machine-readable formats include CSV, XML, JSON and Excel files, while formats like Word documents, HTML pages and PDF files are more concerned with the visual layout of the information. PDF for example is a language which talks directly to your printer, it’s concerned with position of lines and dots on a page, rather than distinguishable characters.
Scraping web sites: what for?

Everyone has done this: you go to a web site, see an interesting table and try to copy it over to Excel so you can add some numbers up or store it for later. Yet this often does not really work, or the information you want is spread across a large number of web sites. Copying by hand can quickly become very tedious, so it makes sense to use a bit of code to do it.

The advantage of scraping is that you can do it with virtually any web site — from weather forecasts to government spending, even if that site does not have an API for raw data access.
What you can and cannot scrape

There are, of course, limits to what can be scraped. Some factors that make it harder to scrape a site include:

Badly formatted HTML code with little or no structural information e.g. older government websites.

Authentication systems that are supposed to prevent automatic access e.g. CAPTCHA codes and paywalls.

Session-based systems that use browser cookies to keep track of what the user has been doing.

A lack of complete item listings and possibilities for wildcard search.

Blocking of bulk access by the server administrators.

Another set of limitations are legal barriers: some countries recognize database rights, which may limit your right to re-use information that has been published online. Sometimes, you can choose to ignore the license and do it anyway — depending on your jurisdiction, you may have special rights as a journalist. Scraping freely available Government data should be fine, but you may wish to double check before you publish. Commercial organizations — and certain NGOs — react with less tolerance and may try to claim that you’re “sabotaging” their systems. Other information may infringe the privacy of individuals and thereby violate data privacy laws or professional ethics.
Tools that help you scrape

There are many programs that can be used to extract bulk information from a web site, including browser extensions and some web services. Depending on your browser, tools like Readability (which helps extract text from a page) or DownThemAll (which allows you to download many files at once) will help you automate some tedious tasks, while Chrome’s Scraper extension was explicitly built to extract tables from web sites. Developer extensions like FireBug (for Firefox, the same thing is already included in Chrome, Safari and IE) let you track exactly how a web site is structured and what communications happen between your browser and the server.

ScraperWiki is a web site that allows you to code scrapers in a number of different programming languages, including Python, Ruby and PHP. If you want to get started with scraping without the hassle of setting up a programming environment on your computer, this is the way to go. Other web services, such as Google Spreadsheets and Yahoo! Pipes also allow you to perform some extraction from other web sites.
How does a web scraper work?

Web scrapers are usually small pieces of code written in a programming language such as Python, Ruby or PHP. Choosing the right language is largely a question of which community you have access to: if there is someone in your newsroom or city already working with one of these languages, then it makes sense to adopt the same language.

While some of the click-and-point scraping tools mentioned before may be helpful to get started, the real complexity involved in scraping a web site is in addressing the right pages and the right elements within these pages to extract the desired information. These tasks aren’t about programming, but understanding the structure of the web site and database.

When displaying a web site, your browser will almost always make use of two technologies: HTTP is a way for it to communicate with the server and to request specific resource, such as documents, images or videos. HTML is the language in which web sites are composed.
The anatomy of a web page

Any HTML page is structured as a hierarchy of boxes (which are defined by HTML “tags”). A large box will contain many smaller ones — for example a table that has many smaller divisions: rows and cells. There are many types of tags that perform different functions — some produce boxes, others tables, images or links. Tags can also have additional properties (e.g. they can be unique identifiers) and can belong to groups called ‘classes’, which makes it possible to target and capture individual elements within a document. Selecting the appropriate elements this way and extracting their content is the key to writing a scraper.

Viewing the elements in a web page: everything can be broken up into boxes within boxes.

To scrape web pages, you’ll need to learn a bit about the different types of elements that can be in an HTML document. For example, the <table> element wraps a whole table, which has <tr> (table row) elements for its rows, which in turn contain <td> (table data) for each cell. The most common element type you will encounter is <div>, which can basically mean any block of content. The easiest way to get a feel for these elements is by using the developer toolbar in your browser: they will allow you to hover over any part of a web page and see what the underlying code is.

Tags work like book ends, marking the start and the end of a unit. For example <em> signifies the start of an italicized or emphasized piece of text and </em> signifies the end of that section. Easy.

An example: scraping nuclear incidents with Python

NEWS is the International Atomic Energy Agency’s (IAEA) portal on world-wide radiation incidents (and a strong contender for membership in the Weird Title Club!). The web page lists incidents in a simple, blog-like site that can be easily scraped.

To start, create a new Python scraper on ScraperWiki and you will be presented with a text area that is mostly empty, except for some scaffolding code. In another browser window, open the IAEA site and open the developer toolbar in your browser. In the “Elements” view, try to find the HTML element for one of the news item titles. Your browser’s developer toolbar helps you connect elements on the web page with the underlying HTML code.

Investigating this page will reveal that the titles are <h4> elements within a <table>. Each event is a <tr> row, which also contains a description and a date. If we want to extract the titles of all events, we should find a way to select each row in the table sequentially, while fetching all the text within the title elements.

In order to turn this process into code, we need to make ourselves aware of all the steps involved. To get a feeling for the kind of steps required, let’s play a simple game: In your ScraperWiki window, try to write up individual instructions for yourself, for each thing you are going to do while writing this scraper, like steps in a recipe (prefix each line with a hash sign to tell Python that this not real computer code). For example:

  # Look for all rows in the table
  # Unicorn must not overflow on left side.

Try to be as precise as you can and don’t assume that the program knows anything about the page you’re attempting to scrape.

Once you’ve written down some pseudo-code, let’s compare this to the essential code for our first scraper:

  import scraperwiki
  from lxml import html

In this first section, we’re importing existing functionality from libraries — snippets of pre-written code. scraperwiki will give us the ability to download web sites, while lxml is a tool for the structured analysis of HTML documents. Good news: if you are writing a Python scraper with ScraperWiki, these two lines will always be the same.

  url = "http://www-news.iaea.org/EventList.aspx"
  doc_text = scraperwiki.scrape(url)
  doc = html.fromstring(doc_text)

Next, the code makes a name (variable): url, and assigns the URL of the IAEA page as its value. This tells the scraper that this thing exists and we want to pay attention to it. Note that the URL itself is in quotes as it is not part of the program code but a string, a sequence of characters.

We then use the url variable as input to a function, scraperwiki.scrape. A function will provide some defined job — in this case it’ll download a web page. When it’s finished, it’ll assign its output to another variable, doc_text. doc_text will now hold the actual text of the website — not the visual form you see in your browser, but the source code, including all the tags. Since this form is not very easy to parse, we’ll use another function, html.fromstring, to generate a special representation where we can easily address elements, the so-called document object model (DOM).

  for row in doc.cssselect("#tblEvents tr"):
  link_in_header = row.cssselect("h4 a").pop()
  event_title = link_in_header.text
  print event_title

In this final step, we use the DOM to find each row in our table and extract the event’s title from its header. Two new concepts are used: the for loop and element selection (.cssselect). The for loop essentially does what its name implies; it will traverse a list of items, assigning each a temporary alias (row in this case) and then run any indented instructions for each item.

The other new concept, element selection, is making use of a special language to find elements in the document. CSS selectors are normally used to add layout information to HTML elements and can be used to precisely pick an element out of a page. In this case (Line. 6) we’re selecting #tblEvents tr which will match each <tr> within the table element with the ID tblEvents (the hash simply signifies ID). Note that this will return a list of <tr> elements.

As can be seen on the next line (Line. 7), where we’re applying another selector to find any <a> (which is a hyperlink) within a <h4> (a title). Here we only want to look at a single element (there’s just one title per row), so we have to pop it off the top of the list returned by our selector with the .pop() function.

Note that some elements in the DOM contain actual text, i.e. text that is not part of any markup language, which we can access using the [element].text syntax seen on line 8. Finally, in line 9, we’re printing that text to the ScraperWiki console. If you hit run in your scraper, the smaller window should now start listing the event’s names from the IAEA web site.

  figs/incoming/04-DD.png
  Figure 58. A scraper in action (ScraperWiki)

You can now see a basic scraper operating: it downloads the web page, transforms it into the DOM form and then allows you to pick and extract certain content. Given this skeleton, you can try and solve some of the remaining problems using the ScraperWiki and Python documentation:

Can you find the address for the link in each event’s title?

Can you select the small box that contains the date and place by using its CSS class name and extract the element’s text?

ScraperWiki offers a small database to each scraper so you can store the results; copy the relevant example from their docs and adapt it so it will save the event titles, links and dates.

The event list has many pages; can you scrape multiple pages to get historic events as well?

As you’re trying to solve these challenges, have a look around ScraperWiki: there are many useful examples in the existing scrapers — and quite often, the data is pretty exciting, too. This way, you don’t need to start off your scraper from scratch: just choose one that is similar, fork it and adapt to your problem.

Source: http://datajournalismhandbook.org/1.0/en/getting_data_3.html

Wednesday, 3 August 2016

Data Mining vs Screen-Scraping

Data Mining vs Screen-Scraping

Data mining isn't screen-scraping. I know that some people in the room may disagree with that statement, but they're actually two almost completely different concepts.

In a nutshell, you might state it this way: screen-scraping allows you to get information, where data mining allows you to analyze information. That's a pretty big simplification, so I'll elaborate a bit.

The term "screen-scraping" comes from the old mainframe terminal days where people worked on computers with green and black screens containing only text. Screen-scraping was used to extract characters from the screens so that they could be analyzed. Fast-forwarding to the web world of today, screen-scraping now most commonly refers to extracting information from web sites. That is, computer programs can "crawl" or "spider" through web sites, pulling out data. People often do this to build things like comparison shopping engines, archive web pages, or simply download text to a spreadsheet so that it can be filtered and analyzed.

Data mining, on the other hand, is defined by Wikipedia as the "practice of automatically searching large stores of data for patterns." In other words, you already have the data, and you're now analyzing it to learn useful things about it. Data mining often involves lots of complex algorithms based on statistical methods. It has nothing to do with how you got the data in the first place. In data mining you only care about analyzing what's already there.

The difficulty is that people who don't know the term "screen-scraping" will try Googling for anything that resembles it. We include a number of these terms on our web site to help such folks; for example, we created pages entitled Text Data Mining, Automated Data Collection, Web Site Data Extraction, and even Web Site Ripper (I suppose "scraping" is sort of like "ripping"). So it presents a bit of a problem-we don't necessarily want to perpetuate a misconception (i.e., screen-scraping = data mining), but we also have to use terminology that people will actually use.

Source: http://ezinearticles.com/?Data-Mining-vs-Screen-Scraping&id=146813