When you think of the term data mining, what comes to mind? If an image of a mine shaft and miners digging for diamonds or gold comes to mind, you're on the right track. Data mining involves digging for gems or nuggets of information buried deep within data. While the miners of yesteryear used manual labor, modern data minors use business intelligence solutions to extract and make sense of data.
As businesses have become more complex and more reliant on data, the sheer volume of data has exploded. The term "big data" is used to describe the massive amounts of data enterprises must dig through in order to find those golden nuggets. For example, imagine a large retailer with numerous sales promotions, inventory, point of sale systems, and a gift registry. Each of these systems contains useful data that could be mined to make smarter decisions. However, these systems may not be interlinked, making it more difficult to glean any meaningful insights.
Data warehouses are used to extract information from various legacy systems, transform the data into a common format, and load it into a data warehouse. This process is known as ETL (Extract, Transform, and Load). Once the information is standardized and merged, it becomes possible to work with that data.
Originally, all of this behind-the-scenes consolidation took place at predetermined intervals such as once a day, once a week, or even once a month. Intervals were often needed because the databases needed to be offline during these processes. A business running 24/7 simply couldn't afford the down time required to keep the data warehouse stocked with the freshest data. Depending on how often this process took place, the data could be old and no longer relevant. While this may have been fine in the 1980s or 1990s, it's not sufficient in today's fast-paced, interconnected world.
Real-time EFL has since been developed, allowing for continuous, non-invasive data warehousing. While most business intelligence solutions today are capable of mining, extracting, transforming, and loading data continuously without service disruptions, that's not the end of the story. In fact, data mining is just the beginning.
After mining data, what are you going to do with it? You need some form of enterprise reporting in order to make sense of the massive amounts of data coming in. In the past, enterprise reporting required extensive expertise to set up and maintain. Users were typically given a selection of pre-designed reports detailing various data points or functions. While some reports may have had some customization built in, such as user-defined date ranges, customization was limited. If a user needed a special report, it required getting someone from the IT department skilled in reporting to create or modify a report based on the user's needs. This could take weeks - and it often never happened due to the hassles and politics involved.
Fortunately, modern business intelligence solutions have taken enterprise reporting down to the user level. Intuitive controls and dashboards make creating a custom report a simple matter of drag and drop while data visualization tools make the data easy to comprehend. Best of all, these tools can be used on demand, allowing for true, real-time ad hoc enterprise reporting.
Source: http://ezinearticles.com/?Data-Mining-in-the-21st-Century:-Business-Intelligence-Solutions-Extract-and-Visualize&id=7504537
As businesses have become more complex and more reliant on data, the sheer volume of data has exploded. The term "big data" is used to describe the massive amounts of data enterprises must dig through in order to find those golden nuggets. For example, imagine a large retailer with numerous sales promotions, inventory, point of sale systems, and a gift registry. Each of these systems contains useful data that could be mined to make smarter decisions. However, these systems may not be interlinked, making it more difficult to glean any meaningful insights.
Data warehouses are used to extract information from various legacy systems, transform the data into a common format, and load it into a data warehouse. This process is known as ETL (Extract, Transform, and Load). Once the information is standardized and merged, it becomes possible to work with that data.
Originally, all of this behind-the-scenes consolidation took place at predetermined intervals such as once a day, once a week, or even once a month. Intervals were often needed because the databases needed to be offline during these processes. A business running 24/7 simply couldn't afford the down time required to keep the data warehouse stocked with the freshest data. Depending on how often this process took place, the data could be old and no longer relevant. While this may have been fine in the 1980s or 1990s, it's not sufficient in today's fast-paced, interconnected world.
Real-time EFL has since been developed, allowing for continuous, non-invasive data warehousing. While most business intelligence solutions today are capable of mining, extracting, transforming, and loading data continuously without service disruptions, that's not the end of the story. In fact, data mining is just the beginning.
After mining data, what are you going to do with it? You need some form of enterprise reporting in order to make sense of the massive amounts of data coming in. In the past, enterprise reporting required extensive expertise to set up and maintain. Users were typically given a selection of pre-designed reports detailing various data points or functions. While some reports may have had some customization built in, such as user-defined date ranges, customization was limited. If a user needed a special report, it required getting someone from the IT department skilled in reporting to create or modify a report based on the user's needs. This could take weeks - and it often never happened due to the hassles and politics involved.
Fortunately, modern business intelligence solutions have taken enterprise reporting down to the user level. Intuitive controls and dashboards make creating a custom report a simple matter of drag and drop while data visualization tools make the data easy to comprehend. Best of all, these tools can be used on demand, allowing for true, real-time ad hoc enterprise reporting.
Source: http://ezinearticles.com/?Data-Mining-in-the-21st-Century:-Business-Intelligence-Solutions-Extract-and-Visualize&id=7504537